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Asymptotic Equivalence of Abstract Impulsive
Differential Equations

D. D. Bainov,' S. I. Kostadinov,? and A. D. Myshkis®
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The notion of (h, k)-dichotomy is introduced, which is a generalization of the
classical exponential dichotomy. By means of the Schauder—Tychonoff theorem
an asymptotic equivalence is proved between a linear impulsive differential
equation which is (h, k)-dichotomous and the corresponding perturbed
nonlinear equation.

1. INTRODUCTION

The beginning of the development of the theory of abstract impulsive
differential equations was marked by the publication of a cycle of papers in
the period 1987-1991 (Bainov et al., 1988a—c, 1989a—c, 1990a,b, 1991;
Zabreiko et al., 1988).

In the present paper the asymptotic equivalence between a linear impul-
sive differential equation and its corresponding nonlinear perturbed equation is
investigated. This work was influenced by the ideas of Naulin and Pinto (n.d.).

2. STATEMENT OF THE PROBLEM

Let X be an arbitrary Banach space with identity operator I. Denote by
L(X) the space of all linear bounded operators acting in X. Consider the
impulsive differential equations

% =AWy + Fhy) (@ #1) n
W) = (Qn + Ry  (n=1,2,3,..) @
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and
dx
T A(Dx @t #t,) 3)
x(ty) = Oux(t,) 4)

where t € R, = [0, ) and x(), y(f) € X (¢ € R,). The solutions x, y at ¢
= t, are assumed to be continuous from the left.

We shall say that conditions (H) are satisfied if the following condi-
tions hold:

H1. The sequence of points of impulse effect T = {1, t5, . . .} C (0, )
satisfies the conditions

t < li+1s lim t, = ®©
n—o

H2. The operator-valued function A: R,\{z,} — L(X) is continuously
extendable from (¢,, ) to [t L] (B =0, 1, ... 1, = 0).

H3. The function F: (R,\{t,}}) X X — X is continuously extendable
from (¢, t,o)) X X0 {4, ti] X X (n =0, 1,...).

H4. 9, € L(X) and there exist Q;' € L(X).

HS5. R,: X — X are continuous operators.

Let conditions (H) hold. By U(#) (0 = t < =) denote the evolutionary
operator of the linear equation (3), (4) (e.g., Zabreiko et al., 1988; Bainov
et al., 1989a,c), i.e., the function ¢+ — U(f)x, is a solution of equation (3),
(4) with initial condition x(0) = x5 (Vx, € X).

Definition 1. Let h, k: R, — (0, ©) be two functions such that A~! and
k™! are continuously extendable from (t,, f,,,) to [f,, ,.,] and let P be a
projector acting in X. The linear impulsive equation (3), (4) is said to be
(h, k)-dichotomous if there exists a constant K > 0 such that

HUMPUT' )l = Kh(ph™!(s), O0=s=t &)
NUT = PYUT' )| = K™\ (Dk(s), O0=t=<s 6
h™' = 1/hand k' = l/k.

Remark 1. We note that for A(t) = k(1) = ¢~%" we obtain the exponential
dichotomy of the impulsive equation (3), (4) (e.g., Bainov et al., 1989c,
1991). If the functions h(t) and k(1) are differentiable, we obtain the (.,
l2)-dichotomy from Muldowney (1984).

Let O = 1,. By C(#) denote the set of all functions f: [fg, ©) — X which
are continuous for ¢t € [t5, ©)\{t,}, have discontinuities of the first kind at
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t =1, = t, and are continuous from the left. With respect to the family of
seminorms (fy < A < =)

Py(f) = sup [fOl
p=r=A

the set C(f) is a locally convex, metrizable space.

3. MAIN RESULTS
By B, we shall denote the closed ball in X of center O and radius r. Set
D, = {x(*) € Clto): h™(x(t) € Bt = 1)} Q)

Let x & C(#). Consider the operator

(<]

Q) = x(1) + J G(t, $)F(s, y(s)) ds

0

+ X G pH(() (¢ =1) ¥

J o=y
where

_ [umPU(s), 0<s=<t
G 5) = {-—U(t)(l —PUNs), 0=t<s ®
is the Green’s operator-valued function for the linear equation (3), (4) (Bainov
et al., 1989a, 1991) and H; = QJ-"RJ-.

Lemma 1. Let the following conditions hold:

1. Conditions (H) are met.

2. The linear equation (3), (4) is (h, k)-dichotomous.

3. There exist constants C, C; = 1 for which the following inequalities
are valid: k(KO (K NS) = C, k(D = C, (0 =5 =t < ™),

4N F@e I = rie, Iyl 1= 0, y € X, where

J sup r(t, h()x) dt = m(p, tp) < ®
0]

lxli=p

5 1Hll = mlix|| G = 1, 2, ...), where 272, m; < M.

6. For some o and p the inequality o + KpCm(p, 1) + KpCM =< pis valid.
7. The sets F([ty, ®) X B,) and U2, H;(B,) are relatively compact in X.
Then for each x € D, the operator Q has a fixed point in D,.



386 Bainov, Kostadinov, and Myshkis

Proof. In order to prove Lemma 1, we shall show that:

(i) @: D, - D,

(ii) Q is a continuous operator.

(iii) OD, is a relatively compact set.

(i) Let y(-) € D, be an arbitrary element. Then for
BNy

-]

= h~ 1 (Ox(r) + j h~Y (G, s)F(s, ¥(s)) ds

0

+ 2 kTG, 5)H () (10

J: to=1j
from relations (9), (5), (6) we deduce the estimate
(LA G(516]]

t

= A7 (x| + K J h= O™ (DA()r(s, y(sHA' () Iy () ds

0

rK j B Ok k)RS, WAyl ds

+ K X R 0ROR @R ()m ]|y

J =t

+ K Y ROk Ok(h()R @)m] y(@) | an

FEE
and, consequently,

(L G(570]

50+Kpf

L]

!

r(s, y(s)) ds + KpC r’ r(s, y(s)) ds

+Kp2mj+KpC2mj

ljSl IStj

< g + KpC J r(s, y(s)) ds + KpC Y, m;
i=1

i
= o + KpCm(p, 1) + KpCM

Assertion (i) follows from condition 6 of Lemma 1.
(ii) Let { y,} C D, be an arbitrary sequence tending to y, € D,, i.e., for
each [ > t; we have
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lim sup |ly.(t) — yo(®)|| = O
n—» 1ef10.f]

Let € > 0 be an arbitrarily chosen positive number. Choose the number
= [ so that

KpCJ r(s, 2) ds <§ (z € B,) (12)
lo
and
€
< 13
,02,,. i ™ 4KpC (13

For A~ '(0||Qyo(® — Qy.(D)]] (1o = t = I) we obtain the estimate
A= 1 Qyo(®) — Qya(Dl

=K J h= (OhOR ()| F(s, yo(s)) = F(s, yu(s) |l ds

0

+K J ROk~ (k)| F(s, yo(s)) — F(s, ya(s)l ds

+ K X, R O™ () H; (o(1)) — Hiat)

lj<l
+ K X, 7 k™ Ok I H; (o)) — HiGue))

!Sl}'

<K f B O IFGs, o)) — Fls, ya(s)l ds

L]

lo
+ K J R kT (O, | F (s, yo(s)) — F(s, yals)l ds

0

+K f h™ Ok OKS I F(s, yo(s)) — Fs, ya(s) |l ds
[/

0

+ K X, R ) H o) — HOon)l

1<t
+K 21 R Ok KM Ho(5)) — H)]
nsi=ly
+ K Y b0k Ok o) — HoR) (14)

lo<tj
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The first two integrals and the first two sums on the right-hand side of the
last inequality tend to zero as n — © uniformly with respect to t e [#, /].
The value of the third integral does not exceed

K J R (k™ Ok | F (s, yo(s) Il ds
Il

0

+K r R YOk~ (O | F(s, y ()| ds
Io

o o0

r(s, yo(s)) ds + KpC J s, y,(s)) ds <

)

€

stCj 2

Io

For the third sum we obtain the estimate

K Y i Ok Ok@) | H o)) |

lo<yj

+K 3 O O HOa6))

lo<tj

lo<ij o<y

Thus assertion (ii) is proved.

(iii) It suffices to prove the equicontinuity of the functions of Mp =
0D, (OD, C Dp) on each interval (,, 1,,1) C (f, ) (for the first one instead
of 1, we must take fp). Let s, t € (f,, 1,,,) and let s =<t = 5 + 3. We shall
prove that for sufficiently small values of 8 > 0 the following inequality
is valid:

1@y)t) — (@ <e (v e Dp) (15)
From (8) for (Qy)(H) — (Qy)(s) we obtain the representation
(O)(0) — (Qy)(s)
= x(f) ~ x(s) + Jl U(tYPU™ " ()F(u, y(u)) du

0

- r U — PYU™ (w)F(u, y(u)) du

- r US)PU (WF(u, y(u)) du + fm U(sYI — PYU N u)F(u, y(u)) du

0
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+ 2 UWPU'WH M) — X UOU — PYU t)H (1))

=<t =75

- 3 UEPU\t)H(y(1))

1051j<s

+ 3 U)A — PYUT @)H((1))

Sstj

= xX() — x(s) + f " (WU — UGHPU= W)F(u, y(w)) du

0

- J (U — UsHU — PYUT w)F(u, y(u)) du

+ J | U@PU™" (w)F(u, y(u)) du

5

+ J'I U — PYU (u)F(u, y(u)) du

5

+ X (U@ — U)HPU (t)HL ()

tos:j<s

= X (U@ — Us)A — PYUT ()HLY()

SStj

= x() — x(s) + r (U®OU(s) — DU(GS)PU N (w)F(u, y(u)) du

o

- f " UOU-s) = DU — PYU-')F(u, y(w)) di

+ J UU w)F(w, ) du

5

+ X (UOU™s) — DUSPU ()Hx(1))

:051j<:

- 2 (UMU(s) — DU — PYUT )H; (1) 16)

Choose 8 so small that [|x(r) — x(s)|| < €/6 and ||/ — UU(s)|| < min{a,
b, ¢, d}, where

g=f__ 1
6 Kph(s)m(p, )
b k(s)

€
6 KpCimp, to)
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e 1
6 KpCh(s)M
d=% _kGs)

Then
| @y(r) — Qy)lI

< § +aK f h(s)h™ (h(u)r(u, Y) || y@) || A~ () du
)

+ bK j K= k)G, y) 1yl () du

" j MU~ )l Y6 Ly @)l d

+cK D (R &mlly@) |l

’05’;(5

+ dK Y kT k)m )yl

-<{.
S_l!

Choose 8§ so small that the following inequality should hold, too:

p J I UOU @)l h()r(u, y(w)) du < §

s

Then
1Qy(®) — Qys)lI

< § + aKph(s) I " u, yu)) du + bKpk=\(s)
fo

x r k(h(uyr(u, y(u)) du + = + cKph(s) S m;

5 6 0= Ij<:

+ dKpk~Y(s) Y, k(t)h(t)m;

S5t

=

+ aKph(s)m(p, to) + bKpk™'(s)Cim(p, 1)

[= )]
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+ g + cKph(s)M + dKpk™\(5)C!M = €

From condition 7 of Lemma 1 there follows the compactness in X of the sets
H ={(Q)t)rzeDp} (t=1t) W

Remark 1. For dim X < o« the assertion of Lemma 1 is still valid without
condition 7.

Theorem 1. Let the conditions of Lemma 1 hold, where the function x
is a solution of the linear impulsive equation (3), (4).

Then the fixed point y(-) of the operator Q is a solution of the nonlinear
equation (1), (2).

Proof. Taking into account that x is a solution of (3), (4) and the equality
Wi, 0) + Wo(t, ) =1

where W,(t, s) = UOPU™'(s) and W,(z, s) = UWDT — P)YU(s), for ¢t ¢
{t,} we obtain

y'(® = (@@
= x'(t) + W(t, F(z, y(1)

+ A@®) f W1, 9F(s, y(s)) ds + Wa(t, DF(L, y(1))

0

- A(t)f Wat, )F(s, Y(s)) ds + A() X, Wi(t, ()H/((5)

=<t

—A@W) D Wit )HO())

l<lj<oo

= A(ty(t) + F(, y(®)
Let £ = t,. Then

Y1) = (Qy)(r)

= Qux(t,) + r Q. Wi(t,, $)F(s, y(s)) ds

fo

- Jw QnWZ(tm S)F(S, )’(S)) ds + 2 QnWl(tm tj)H/(y(tj))

10=1=L,
n 0=4=tn
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= X CWilt,, t)H((2))

j=n+1

= Q.by(t)) + Wi(ty, t)H, (1)
+ Waltn, t)H(y(2,)))

= Quy(ts) + QuH,(¥(1,))

= 0,y(t) + R,O(t))) ®

Theorem 2. Let the conditions of Lemma 1 hold.
Then for any solution y € D, of the nonlinear impulsive equation (1),
(2) there exists a solution x € D, of (3), (4).

Proof. Consider the function

x(t) = y(1) — J , UMPU™'(s)F(s, ¥()) ds

0

+ Jm U@ — PYUY(s)F(s, y(s)) ds

- 3 U®PU'\@)H())

<tj<t

+ X U = PYUT DHL (1)) a7

lSlj

It is not hard to check that the function x(¢) is correctly defined and satisfies
equation (3), (4). m

Theorem 3. Let the following conditions hold:
1. The conditions of Lemma 1 are met.
2. The following condition holds:

JI h(t)h~(s) ||sup r(s, h(s)) ds

0 xl|=p

+ r k™ N($)k(r) IIsup r(s, h(s)) ds

xj|=p

+ X h@ORNm; + Y, kT (e)k(t)m; — 0 (t > ©)

lj<l ISlj

3. KC lim,y_ SUP,5 m(p, o) + KCM < 1.
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Then equations (1), (2) and (3), (4) are asymptotically equivalent, i.e.,
for any bounded solution y(-) of (1), (2) there exists a bounded solution x(-)
of (3), (4) and, conversely, for any bounded solution x(-) of (3), (4) there
exists a bounded solution y(-) of (1), (2) such that

lim (x(r) — y(0) =0
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